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Goals of the AGNI Project

• Design and build a secure , extensible, fault-
tolerant infra-structure for peer-to-peer
event-driven (a-synchronous) applications.

• Develop peer-to-peer event-driven
applications based on developed infra-
structure.



Application Scenarios

• Distributed control.

• Conferencing, conference control.

• Distributed testing, logging and monitoring.

• Distributed Interactive Simulation.

• Network Management.



Design Philosophy

• Distributed systems designer should be able
to:
– 1. Decide logical application structure.

– 2. Application functionality.

• Independent of how application components
are mapped to physical resources
(separation of logical design and physical
design).



Design Considerations

• Extensibility and flexibility.

• Fault tolerance.

• Re-configurability.

• Security.

• Heterogeneity.



Event-oriented
programming model.

• One-way message oriented.

• Message arrival triggers execution of event
handler
– Event handler can send message to another

communication end-point.



Abstractions

• locations, streams, agents and events.

• Location maps to a machine.

• A Stream is a named communication end-
point.

• An Event is a change in system state -
potentially triggers agent execution.



Distributed Streams
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Messages



Attributes of a Stream

• Ordering guarantee.

• Unique global name.

• Assigned Home Location but can live on
any workstation (that allows it).

• Can migrate between workstations.

• Has 0 or more Agents associated with it.



External and Agent Scripts

   Agent Daemon

Agent Scripts (internal commands)

Application scripts
(external commands)



Re-configurability

• Change the location of computational
components dynamically while the system
is in execution.

• Message ordering guarantees are
maintained while system is being re-
configured.

• Useful for latency reduction/load balancing.



System  Features

• Agents may send messages to streams.

• External programs may send messages to
streams.

• System can re-configure itself between
messages.

• Multiple points of control are allowed.



System Organization
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Agent script

• Agent script consists up to 5 TCL scripts:

– on-init : Initializer.

– on-append: Runs message is appended.

– on-relocation: Runs at destination after
move

– on-failure: Runs at home node on failure.

– on-exit: Finalizer  (cleanup script).



Resource-control Architecture

• Two-tiered Resource-control
Architecture.

• Per daemon resource-controller:
• Controls resource usage on a per Agent-Daemon

basis.

• Per stream resource-controller:
• Controls resource usage on a per-stream basis.



Per-Daemon Resource Controller

• Stationary resource-control agent at each
location

– specified at startup time.

– Can only be registered locally.

• Approves/denies stream creation/ arrival at
a location.



Per-Stream Resource Controller

• Can be specified at Stream creation.

• Intervenes on append, agent attach, re-
location, arrival.

• Works as a meta-agent.
– Gets control before user-registered agents get to run.

– Can decide which user-registered agents get to run.

– Can execute commands in the context of the user
agents.



Per-Stream Resource-Controller
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Agent Daemon Organization
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Application : Agent Monitor

• Track the location of agents in the
distributed system.

• Reactive GUI application.

• Allow user to easily deploy agents using a
GUI driven management tool.



Agent monitor organization

Tk commands

Monitor stream
Resource Control Agent

Arrival event

Monitor GUI



Application:
Tk-Collaborative Toolkit

• Enables collaborative sharing of arbitrary
TK applications.

• Self-reconfiguring distributed application.

• Reconfigures itself to minimize latency for
the interactive user.



Application:
Tk-Collaborative Toolkit

Event Dispatcher

Tk Application Tk Application

Tk Events
Tk Events

Mobile 

Tk Events Tk Events

Tk Events



Application:
Tcl/TK Collaborative toolkit
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Application: Agent Debugger

• A tool to debug Agent Scripts.

• Extension of tcl-debug debugger.

• Goals:
– Location transparency.

– Global stepping.

– Global conditional breaks.



Agent Debugger Organization
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Current Status.

• Initial prototype of agent system with
limited features.
– Lacks fault tolerance

– Uses tcp for message passing (lacks
scalability).

– Limited resource-control model.

– Lacks security.

• A few applications have been developed.



Future Work Includes

• Application-driven extension of system
features.
– Adaptive applications for networks.

– Virtual Microscope.

– Distributed testing of collaborative systems.

• Improving the communication scalability.

• Fault-tolerance.

• Security.


